Refine Your Search

Topic

Author

Search Results

Technical Paper

The Analysis of Combustion Flame Under EGR Conditions in a DI Diesel Engine

1996-02-01
960323
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, this phenomena has been studied in detail in a multi-cylinder DI diesel engine using a new method allowing the in-cylider temperature distribution to be measured by the two color method. An endoscope is installed in the combustion chamber and flame light introduced from the endoscope is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature and KL factor are immediately calculated by a computer using the two color images from the CCD camera. In the case of EGR, the test was conducted under 75% load conditions. The flame temperature was reduced according to an increase of EGR rate.
Technical Paper

Development of J-Series Engine and Adoption of Common-Rail Fuel Injection System

1997-02-24
970818
Hino has developed new J-series medium-duty diesel engines for trucks and buses. The new J-series comprises four, five and six-cylinder engines with the same cylinder bore and stroke and with both naturally aspirated and charge air cooled. Both output and torque have been enhanced along with fuel efficiency in an engine that is lighter and more compact than ever and reaches new heights of durability and reliability. J-series engine features a 4-valve system and OHC valve train design, which achieved an uniform combustion by a centered nozzle and combustion chamber design. This decreases the maximum combustion temperature and hence improved the NOx,smoke and PM emissions. And a reduced pumping loss results in improving the fuel consumption. J-series engines thus meet the Japanese 1994 emission regulations. Another feature is a fully electronically controlled common-rail fuel injection system, which is equipped in a specified engine of naturally aspirated 6 cylinder.
Technical Paper

Investigation of Thermal Fatigue Evaluation Method for Cast Iron

2013-04-08
2013-01-0393
We have developed a new test method in which temperature of cavity lip of a piston alone during engine rotation is reproduced, cavity lip strain is measured. As the results of strain measurement using the test method in a condition that simulates of conventional engines, a strain behavior was out-of-phase. And in a condition that simulates of high-load engines in future, strain behavior was clockwise-diamond cycle. It was found from the result of the test method developed that strain increased on the cavity lip. The fatigue life of the cavity lip was evaluated using the strain measured and isothermal fatigue curves which obtained by the strain controlled isothermal fatigue test. The result of engine durability test has revealed that the developed method was valid for thermal fatigue evaluation of the cavity lip.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines -1st report: The Effect of the Design of Piston Skirt on Lubricating Oil Consumption-

2005-05-11
2005-01-2169
Decrease of engine lubricating oil consumption is necessary to reduce environmental impact. Usually oil consumption is estimated experimentally at the engine development stage, and it is expensive in terms of both time and cost. Therefore it is essential to develop its calculation method. The purposes of this study are clarifying the mechanism of engine lubricating oil consumption and developing the calculation method for the estimation of oil consumption. In this report, oil film on the piston skirt, which affected on oil volume supplied to the oil ring, was observed. Furthermore the effect of piston skirt design on oil consumption was investigated. Findings showed that the splashed oil on the cylinder liner had much effect on the oil film on the piston skirt hence oil consumption. It was suggested that the splashed oil on the cylinder liner affected on supply oil volume and it should be considered in the calculation of oil consumption.
Technical Paper

Development of a Higher Boost Turbocharged Diesel Engine for Better Fuel Economy in Heavy Vehicles

1983-02-01
830379
This paper presents technical solutions and a development process to accomplish not only superior fuel economy but also excellent driveability with a turbocharged diesel engine for heavy duty trucks. For better fuel economy, one of the basic considerations is how to decrease the friction losses of the engine itself while keeping the required horsepower and torque characteristics. A high boost turbocharged small engine offers this possibility, but it has serious disadvantages such as inferior low speed torque, poorer accelerating response, insufficient engine braking performance, and finally not always so good fuel consumption in the engine operating range away from the matching point between engine and turbocharger. These are not acceptable in complicated traffic conditions like those in Japan - a mixture of mountainous and hilly roads, city road with numerous traffic signals, and freeways.
Technical Paper

Analysis of Cold Start Combustion in a Direct Injection Diesel Engine

1984-02-01
840106
Fuel injection timing retardation for reducing exhaust emission of direct injection diesel engines prolongs the period to complete cold starting. Engine speed at this period varies through some accelerating and faltering stages. The speed variation and relating combustion characteristics was investigated through the measurement of cylinder pressure for each cylinder as well as the dynamic fuel injection timing and instantaneous engine speed. An improvement of cold start was shown by application of afterheat of a sheathed type glow plug and an electronic fuel injection timing control device.
Technical Paper

Development of a Combustion System for a Light Duty D.I. Diesel Engine

1983-09-12
831296
A new combustion system for a light duty D.I. diesel engine was developed, and a 3.5 ton payload truck (6.5 ton G.V.W.) equipped with this D.I. diesel engine and this combustion system realized good fuel economy and lower exhaust gas emission. Generally, light duty vehicles have to operate over a wide engine speed range. Therefore application of a D.I. diesel engine to light duty vehicles is difficult because of combustion tuning requirements over a wide engine speed range. Up to now, most of the diesel engines for light vehicles have been of the I.D.I. type. But the D.I. diesel engine has an evident advantage of lower fuel consumption. In these circumstances the authors developed a new combustion chamber shape for a small D.I. diesel engine with turbulence induced intake port and optimum fuel injection equipment. Various combustion chamber geometries were tested and evaluated.
Technical Paper

Effect of Combustion Chamber Configuration on In-Cylinder Air Motion and Combustion Characteristics of D.I. Diesel Engine

1985-02-01
850070
A new combustion system for a light duty D. I. diesel engine was developed and introduced (1)*. The combustion chamber, which was used in the combustion system, has 4 concaves on the periphery of the inner wall and was calld HMMS-III. This combustion chamber realized better fuel consumption and lower smoke level over a wide speed range. However, the effects of HMMS-III combustion chamber on in-cylinder air motion and combustion characteristics were not yet clarified in the previous paper. In this study, in order to clarify the effects of HMMS-III combustion chamber on in-cylinder air motion and characteristics, analysis of flow direction and streak line via oil film method was carried out in comparison with flat dish and re-entrant type combustion chambers. Further, measurement of in-cylinder air motion by L.D.V. and observation of mixture formation and burning process via high speed schlieren photography were carried out.
Technical Paper

Load and/or Speed Sensing Power Steering for Medium and Heavy Trucks

1985-12-01
852331
It is preferable that power steering permits “static park” and has a good “road Feel” when running. In order to permit “static park”, a large bore actuation cylinder with high flow pump is required. Such a method, however, has two defects, a loss power for driving a large volume pump and a poor “road feel”. Resolving these problems and achieving the above matters. Hino has developed a load sensing power steering system. This system, which employes two actuation cylinders controlled by means of a unique load sensing valve arrangement, is designed to permit use of only one cylinder for highway speeds and both cylinders during a static park maneuver. When the system is combined with the preceding speed sensing power steering, “static park” is further facilitated and a tasty “road feel” is available in accordance with vehicle speed.
Technical Paper

Numerical Simulation and Experimental Observation of Coolant Flow Around Cylinder Liners in V-8 Engine

1988-02-01
880109
In this paper, the flow patterns and velocity distributions of coolant flow around cylinder liners of diesel engine are studied by numerical calculation and experimental observation. The experiment is carried out by oil film method and direct observation with a transparent acrylic cylinder liner. The calculation is performed with the 3-dimensional model by FEM for fluid flow. The motion of coolant flow by calculation corresponds with the result by oil film method and direct observation with transparent cylinder liner. The visualization of the 3-dimensional calculation gives a good understanding about motion of coolant flow and pressure distribution in water chamber. This method is applied to improve the coolant flow with the stagnation around cylinder liner. The effect of improved design is confirmed by experiment. That is, there are no stagnations in the flow around cylinder liners.
Technical Paper

A Study on Combustion of High Pressure Fuel Injection for Direct Injection Diesel Engine

1988-02-01
880422
Characteristics of diesel combustion with high pressure fuel injection were investigated, using a supercharged and charge air cooled single cylinder engine. Observation and analysis of combustion was performed using high speed schlieren photography at a definite low level NOx emission, while varying the parameters of both injection pressure and swirl ratio. Engine performance at a high injection pressure was evaluated in combination with shallow dish type combustion chamber and 8 hole nozzle. Two different intake ports (higher and lower swirl ratio) were used for the evaluation. Conventional injection system in combination with toroidal cavity and 4 hole nozzle was compared as a base line. It is generally said that quiescent combustion system is suitable for higher injection pressure configuration. According to the observed result of combustion photographs, however, higher swirl ratio shows better mixing than a lower swirl ratio, which was also confirmed by the performance test.
Technical Paper

Noise Reduction of Diesel Engine for Heavy Duty Vehicles

1989-02-01
890128
Noise reduction of diesel engines installed in heavy duty vehicles is one of the highest priorities from the viewpoints of meeting the regulations for urban traffic noise abatement and noise reduction in the cabin for lightening fatigue with comfortable long driving. It is necessary that noise reduction measures then be applied to those causes. Noise reduction measures for the diesel engine can be classified into five categories on the noise radiation block-diagram. These are, reduction of combustion and mechanical forces, deformation and vibration control of cylinder block, vibration control of fastened components, prevention of standing wave and close fitting shields. All noise reduction measures for the diesel engine researched for the purpose of practical use are fully described in this paper.
Technical Paper

Development of Methanol Engine with Autoignition for Low NOx Emission and Better Fuel Economy

1989-09-01
891842
The spark-assisted methanol engine has disadvantages like poor fuel economy especially at light load and low spark plug durability affected by combustion characteristics. Investigations of combustion characteristics of the spark ignition system and the autoignition system in the methanol engine and discharge characteristics of a spark plug are described in this paper. It is clear that effective autoignition was accomplished by increasing the compression ratio and adopting an EGR system in the spark-assisted methanol engine. This new improved methanol engine which is named HAMS achieved good fuel economy at light load, a low NOx emission and longer spark plug life. And a heat insulated piston with a stainless steel cap is being investigated for further improvement of autoignition combustion characteristics.
Technical Paper

Low Emission Combustion influences Durability of Fuel Injection Pipe Line and Treatment of the Pipe

1987-09-01
871614
In order to reduce particulate and NOx emission from the direct injection diesel engine, most researchers have been expecting the utilization of higher injection pressure and injection rate for improvement of diesel combustion. In the case of pump-line-nozzle system, the injection pipe line is very important with regard to the high injection pressure. Namely, the pipe line must be able to resist not only high pressure but also cavitation erosion. In this paper, the effect of high injection pressure, injection rate and sharp cutting at the end of fuel injection are discussed along with cavitation phenomena on the injection pipe line. And durability tests on the pipe line system under high injection pressure using a test rig are also described. Regarding durability tests, several measures have been taken for the injection pipe. As a result, the authors have found that the best solution for the injection pipe is a composite pipe made with SUS and steel.
Technical Paper

Characteristics of Diesel Soot Suppression with Soluble Fuel Additives

1987-09-01
871612
Experiments on a large number of soluble fuel additives were systematically conducted for diesel soot reduction. It was found that Ca and Ba were the most effective soot suppressors. The main determinants of soot reduction were: the metal mol-content of the fuel, the excess air factor, and the gas turbulence in the combustion chamber. The soot reduction ratio was expressed by an exponential function of the metal mol-content in the fuel, depending on the metal but independent of the metal compound. A rise in excess air factor or gas turbulence increased the value of a coefficient in the function, resulting in larger reductions in soot with the fuel additives. High-speed soot sampling from the cylinder showed that with the metal additive, the soot concentration in the combustion chamber was substantially reduced during the whole period of combustion. It is thought that the additive acts as a catalyst not only to improve soot oxidation but also to suppress soot formation.
Technical Paper

Advanced Boost-up in Hino EP100-II Turbocharged and Charge-Cooled Diesel Engine

1987-02-01
870298
Hino Motors, Ltd. has added to its line of charge-cooled engines for heavy duty trucks a higher power version which is called EP100-II. To meet the recent customers' demands for rapid transportation with better fuel economy, this engine was developed on the uprating program for the original EP100 which was introduced in 1981 as the first Japanese turbo-charged and air to air chrge-cooled engine. EP100-II has the same displacement as the original EP100, 8.8 liters, and is an in-line six cylinder engine with 228kW (310PS)/2,100rpm (JIS) output that provides the world's utmost level specific output of 25.8 kW (35.1PS)/ liter. Also this engine achieved a maximum BMEP of 16.8 bar/1,300 rpm and best BSFC of 199 gr/kWh at 1,500 rpm. This paper describes the advanced technology for increasing horsepower and improving fuel consumption such as the so-called multi harmonized inertia charging system, the electronically controlled waste gate valve of turbocharger.
Technical Paper

Development of Low Fuel Consumption, High Durability, and Low Emissions J-Series Engines

1999-03-01
1999-01-0830
Environmental protection is now one of the most important social concerns in the world. In 1998, emission controls in the US required the reduction of NOx by 20% from the 1994 limit. Hino Motors has developed new J-series medium-duty diesel engines for trucks that meet the US 1998 emissions regulations. The engines comprise turbocharged and aftercooled 4- and 6-cylinder engines of the same cylinder bore and stroke. The engines feature a 4-valve system, OHC valve train design, centered nozzle arrangement, and an optimum combustion chamber design, which achieved uniform combustion. With these features, the maximum combustion temperature was decreased, and hence reduced the NOx, smoke, and PM emissions. A muffler integrated with a catalytic converter (catalytic muffler) was adopted to reduce PM emissions further. The engines with the catalytic muffler have successfully met the US 1998 emissions regulations.
Technical Paper

A Study on Reducing Cooling loss in a Partially Insulated Piston for Diesel Engine

2018-04-03
2018-01-1276
To improve the thermal efficiency of an engine, it is particularly important to reduce the cooling loss from the combustion gas to the combustion chamber wall, which constitutes a major proportion of the total loss [1]. Previous studies addressing cooling loss reduction attempted to use ceramic in place of the conventional aluminum or iron alloys, but this led to a reduction in the volumetric efficiency and increased smoke emissions. This was caused by the ceramics having both a low thermal conductivity and high heat capacity, relative to aluminum and iron. These characteristics cause the piston wall temperature, which rises during combustion, to remain high during the intake stroke, thus increasing the intake temperature and reducing the volumetric efficiency. This increases the smoke emissions [2].
Technical Paper

Effect of Diamond-Like Carbon Coating on Anti-Scuffing Characteristics of Piston Pins

2019-04-02
2019-01-0184
It has been proposed that downspeeding combined with high boost levels would effectively reduce fuel consumption in heavy-duty diesel engines. Under low-speed and high-boost operating conditions, however, the in-cylinder gas pressure, which acts on the piston crown, is greater than the piston inertia force (such that there is no force reversal), over the entire range of crank angles. Therefore, the piston pin never lifts away from the main loading area (the bottom) of the connecting rod small-end bushing where the contact pressure against the piston pin is highest. In such operating conditions, lubricant starvation is easily induced at the interface between the piston pin and small-end bushing. Through carefully devised engine tests, the authors confirmed that the piston pin scuffing phenomenon arises when the boost pressure exceeds a critical value at which the no-force reversal condition appears.
Technical Paper

Development of Road's Gradient Anticipatory Algorithm for Hybrid Heavy Duty Truck

2014-09-30
2014-01-2377
For the purpose of reducing fuel consumption, a hybrid heavy duty truck was considered. Generally, HV (Hybrid Vehicle)'s energy is regenerated from deceleration energy in urban area. Hybrid heavy duty truck's energy is regenerated from potential energy on highway. Under this circumstance, some portion of energy may not be accumulated, because capacity of HV battery is limited. In order to maximize accumulating energy in the next descent, HV battery's energy shall be adequately reduced beforehand. This can be achieved by optimizing motor assist torque considering road's altitude and gradient. In this paper, performance of the algorithm is discussed.
X